On the Mordell-Weil group of certain abelian varieties defined over the rational function field

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Mordell-weil Rank of an Abelian Variety over a Number Field

Let K be a number field and A an abelian variety over K. The K-rational points of A are known to constitute a finitely generated abelian group (Mordell-Weil theorem). The problem studied in this paper is to find an explicit upper bound for the rank r of its free part in terms of other invariants of A/K. This is achieved by a close inspection of the classical proof of the so-called ‘weak Mordell...

متن کامل

Mordell-Weil growth for GL2-type abelian varieties over Hilbert class fields of CM fields

Let A be a modular abelian variety of GL2-type over a totally real field F of class number one. Under some mild assumptions, we show that the Mordell-Weil rank of A grows polynomially over Hilbert class fields of CM extensions of F .

متن کامل

A Mordell-weil Theorem for Abelian Varieties over Fields Generated by Torsion Points

Let A be an abelian variety over a number field, Tl the ladic Tate module, and Gl the image of the Galois action on Tl. Then Hi(Gl, Tl) is a finite l-group which vanishes for l ≫ 0. We apply this bound for i = 1 and i = 2 to show that ifK denotes the field generated by all torsion points of A, then A(K) is the direct sum of its torsion group and a free abelian group.

متن کامل

Abelian Varieties and the Mordell–Lang Conjecture

This is an introductory exposition to background material useful to appreciate various formulations of the Mordell–Lang conjecture (now established by recent spectacular work due to Vojta, Faltings, Hrushovski, Buium, Voloch, and others). It gives an exposition of some of the elementary and standard constructions of algebro-geometric models (rather than model-theoretic ones) with applications (...

متن کامل

On the Mordell–weil Group of the Elliptic Curve

We study an infinite family of Mordell curves (i.e. the elliptic curves in the form y = x + n, n ∈ Z) over Q with three explicit integral points. We show that the points are independent in certain cases. We describe how to compute bounds of the canonical heights of the points. Using the result we show that any pair in the three points can always be a part of a basis of the free part of the Mord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1991

ISSN: 0022-314X

DOI: 10.1016/s0022-314x(05)80034-4